JOURNAL OF SOLID STATE CHEMISTRY **127,** 354–358 (1996) ARTICLE NO. 0394

LETTER TO THE EDITOR

Effect of Substitution of Cr³⁺ in Place of Mn³⁺ in Rare-Earth Manganates on the Magnetism and Magnetoresistance: Role of Superexchange Interaction and Lattice Distortion in *Ln*Mn_{1-x}Cr_xO₃¹

R. Gundakaram, Anthony Arulraj, P. V. Vanitha, and C. N. R. Rao²

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India

N. Gayathri and A. K. Raychaudhuri

Department of Physics, Indian Institute of Science, Bangalore 560 012, India

and

A. K. Cheetham

Materials Research Laboratory, University of California, Santa Barbara, California 93106

Communicated by J. M. Honig October 29, 1996; accepted November 7, 1996

Magnetic and electrical properties of oxides of the formula $LnMn_{1-x}Cr_xO_3$ (Ln = rare earth) have been investigated to understand the importance of the $Mn^{3+}-O-Cr^{3+}$ superexchange interactions, in contrast to the $Ln_{1-x}A_xMnO_3(A =$ divalent cation) system, where double exchange interactions predominate. All the $LnMn_{1-x}Cr_xO_3$ compositions are ferromagnetic insulators and exhibit small values of negative magnetoresistance (MR) at ordinary temperatures, the highest value of MR at 6 T being ~20% at 120 K for some of the compositions. The results underscore the important role of double exchange, as well as lattice distortion effects, in giving rise to high values of MR in $Ln_{1-x}A_xMnO_3$. © 1996 Academic Press

Rare-earth manganates of the type $Ln_{1-x}A_xMnO_3$ (Ln = rare earth; A = divalent cation) become ferromagnetic near a critical value of x and exhibit an insulatormetal transition close to the Curie temperature (1). These properties are explained based on the double exchange mechanism for electron hopping between Mn³⁺ and Mn⁴⁺ ions (2). These manganates also exhibit giant magnetoresistance (GMR), the magnitude being highest close to T_c (3–6). The GMR in these materials has also been explained on the basis of double exchange, along with other factors

 $^{2}\ensuremath{\,{\rm To}}$ whom correspondence should be addressed.

(7, 8). In particular, lattice distortions arising from the local Jahn-Teller (JT) distortion of the Mn³⁺ ion play a key role in electron transport as well as in magnetic exchange. The origin of the large MR in the $La_{1-x}A_xMnO_3$ observed near $T_{\rm c}$ is partly due to the forced alignment of the local t_{2g} core spins by the application of a magnetic field, causing a reduction in the spin disorder scattering of the e_g electrons. It is also possible that near T_c , the onset of ferromagnetic order and application of a magnetic field give rise to spin-ordering, which, in turn, leads to a reduction in the local distortion, thereby causing delocalization of carriers and reduction of resistivity. It is to be noted that the Mn^{3+} -O-Mn⁴⁺ superexchange interaction is ferromagnetic, unlike the antiferromagnetic Mn³⁺-O-Mn³⁺ and Mn⁴⁺-O-Mn⁴⁺ superexchange interactions. We considered it most interesting to examine the magnetic and electrical properties of rare-earth manganates where Mn^{3+} is partly substituted by Cr^{3+} as in $LnMn_{1-x}Cr_xO_3$, since Cr^{3+} has the same t_{2g}^3 electronic configuration as Mn⁴⁺ but has a larger ionic radius. The $Mn^{3+}-O-Cr^{3+}$ superexchange interaction would be ferromagnetic (9), but there would be no double exchange interaction, as in the case of the $Ln_{1-x}A_xMnO_3$ system containing Mn³⁺–O–Mn⁴⁺ units. The Cr³⁺ ion with a larger radius than Mn⁴⁺ would lower the tolerance factor t, leading to a greater distortion from the ideal cubic structure.

We have prepared several $LnMn_{1-x}Cr_xO_3$ (Ln = La, Pr, Nd, and Gd) derivatives ensuring the absence of Mn^{4+}

¹ Supported by the Jawaharlal Nehru Centre for Advanced Scientific Research.

FIG. 1. X-ray diffractograms of the $LnMn_{0.7}Cr_{0.3}O_3$ compositions.

(in order to eliminate the possibility of double exchange interaction) and investigated their magnetic and electrical properties, including the magnetoresistance behavior, in order to delineate the importance of double exchange and superexchange interactions in determining the GMR and related properties of the manganates. While the present study does indeed show the $LnMn_{1-x}Cr_xO_3$ derivatives to be ferromagnetic, with T_c depending on x and Ln, they are all highly insulating and do not show the characteristic insulator-metal transition at T_c seen in the double exchange manganates. These materials also do not show appreciable magnetoresistance, thus underscoring the important role of double exchange in giving rise to GMR in $La_{1-x}A_xMnO_3$.

All LnMn_{1-x}Cr_xO₃ derivatives were prepared by the solid

state reaction of the rare-earth oxides with MnCO₃ and Cr_2O_3 . La $Mn_{1-x}Cr_xO_3$ compositions prepared in this manner by heating in air at 1370 K for 32 h showed significant amounts of Mn⁴⁺ as determined by redox titrations. The Mn^{4+} content decreases with an increase in x. Thus, the Mn^{4+} content was 5% when x = 0.2 and close to 0% when x = 0.3. In order to be absolutely certain that no Mn⁴⁺ was present, we prepared the LaMn_{1-x}Cr_xO₃ (x = 0.1 to 0.3) compositions by heating in nitrogen at 1370 K for 32 h. Although this method may result in a slight oxygen deficiency, it ensures that both Mn and Cr are in their maximum formal oxidation state of 3⁺. The same procedure was followed to prepare $PrMn_0 Cr_0 O_3$, the x = 0.3 composition being preferred since Mn⁴⁺ is not favored at this Cr content. $NdMn_{0.7}Cr_{0.3}O_3$ and $GdMn_{0.7}Cr_{0.3}O_3$ prepared in air showed no trace of Mn⁴⁺; the heavier rare earths generally do not seem to favor the formation of Mn⁴⁺.

All the $LnMn_{1-r}Cr_rO_3$ compositions had the orthorhombic structure, with the exception of LaMn_{0.8}Cr_{0.2}O₃ prepared in air. We show typical X-ray diffraction patterns of the $LnMn_{0.7}Cr_{0.3}O_3$ compositions in Fig. 1 and list the unit cell parameters in Table 1 along with the Mn⁴⁺ content. In the table, we also indicate the kind of orthorhombic structure adopted by these solids. The O-type orthorhombic perovskite structure ($a < c\sqrt{2} < b$) supports ferromagnetic exchange, but may not exhibit a clear Jahn-Teller distortion. The O'-type structure $(c/\sqrt{2} < a < b)$ leads to ordering of the e_g electrons of Mn³⁺ on the B sites and to an anisotropic magnetic exchange. As the Mn⁴⁺ content increases in $Ln_{1-x}A_xMnO_3$ the structural distortion decreases and one obtains a rhombohedral structure when % $Mn^{4+} \ge 20$ ($t \ge 0.9$). Strong ferromagnetism (highest $T_{\rm c}$) and the onset of metallic state (below $T_{\rm c}$) are seen in the rhombohedral structure. Although Cr³⁺ has the same

Ln	x (t)	% Mn ⁴⁺	$\frac{\text{Lattice}}{a}$	parameters b	(Å) ^b	Θ (K) ^c	$T_{\rm c}({ m K})^d$	$E_{\rm a}~({\rm eV})$
0.3 (0.897)	0	5.489	5.519	7.775 (O)	209	221	0.116	
La (N ₂)	0.1 (0.892)	0	5.524	5.643	7.733 (O')	108	152	0.122
	0.2 (0.894)	0	5.518	5.634	7.755 (O')	118	137	0.118
	0.3 (0.897)	0	5.522	5.614	7.765 (O')	118	128	0.115
$Pr(N_2)$	0.3 (0.896)	0	5.446	5.646	7.641 (O')	100	89	0.257
Nd (air)	0.3 (0.890)	0	5.417	5.619	7.763 (O)	63	73	0.186
Gd (air)	0.3 (0.871)	0	5.319	5.709	7.529 (O)	-10	32	—

 TABLE 1

 Properties of LnMn_{1-x}Cr_xO₃ Compositions

^{*a*} Rhombohedral, $\alpha = 60.6^{\circ}$.

^b O and O' shown in parentheses indicate the type of the orthorhombic structure.

^c Paramagnetic Curie temperatures obtained by extrapolation of $1/\chi$ vs T curves.

^{*d*} Estimated from χ -*T* curves.

FIG. 2. Variation in the orthorhombic cell parameters of $LaMn_{1-x}$ Cr_xO_3 with *x*. The full line corresponds to the data on $LaMn_{1-x}Ga_xO_3$ (10). Note that diamagnetic Ga^{3+} has the same radius as Cr^{3+} .

electronic structure as Mn^{4+} , it does not reduce the lattice distortion sufficiently to effect a transition to the rhombohedral structure, thereby inhibiting the onset of the metallic state below T_c . The larger ionic radius of Cr^{3+} (relative to Mn^{4+}) and lower *t* may be responsible for the retention of the orthorhombic structure. We see from Table 1 that even with 30% Cr^{3+} , t < 0.9. The orthorhombic lattice parameters of LaMn_{1-x}Cr_xO₃ vary with *x*, just as those of LaMn_{1-x}Ga_xO₃ (10), as shown in Fig. 2, suggesting the *B*ion radius to be the crucial factor.

In Fig. 3, we show the dc magnetic susceptibility data of the LaMn_{1-x}Cr_xO₃ compositions prepared in air as well as in nitrogen. The susceptibilities of the $LnMn_{0.7}Cr_{0.3}O_3$ (Ln = La, Pr, Nd, and Gd) compositions were similar, characteristic of ferromagnetic materials. The paramagnetic Curie temperatures, Θ , obtained by the extrapolation of the inverse susceptibility data are generally positive (Table 1). We also list the approximate ferromagnetic $T_{\rm c}$ values in this table. For the $LaMn_{1-x}Cr_xO_3$ compositions, $T_{\rm c}$ decreases with an increase in x, due to the increasing Cr³⁺-O-Cr³⁺ antiferromagnetic (AFM) interaction. In $LnMn_{0.7}Cr_{0.3}O_3$, T_c decreases as we go down the rare-earth series (La > Pr > Nd > Gd). The A-type AFM structure of LaMnO₃ is destroyed by the Cr³⁺ substitution (this is similar to the Mn⁴⁺ substitution in La_{1-x} A_x MnO₃), and the G-type AFM spin structure of LaCrO₃ appears when $x \approx 0.4$ (11). In the x = 0.1-0.3 range investigated by us, antiferromagnetic layers with ferromagnetically aligned moments coexist with a ferrimagnetic phase. The susceptibility behavior of LaMn_{0.7}Cr_{0.3}O₃ suggests ferrimagnetic behavior at low temperatures. The existence of mixed exchange as well as competing types of AFM order in Cr-rich and Mn-rich regions render the magnetic characterization complex. What stands out, however, is that below a certain temperature (designated as T_c) there is an alignment of ferromagnetic moments. Introduction of Cr³⁺ into the *A*type AFM structure of LaMnO₃ can cause spin-realignment of one or more of its Mn³⁺ neighbors, leading to a ferromagnetic moment. This has implications on the magnetoresistance, as pointed out later.

In Fig. 4, we present the temperature variation of the electrical resistivity (ρ) of $LaMn_{1-x}Cr_xO_3$ and LnMn_{0.7}Cr_{0.3}O₃. All these materials are good insulators and do not show metal-insulator transitions at T_c , unlike $La_{1-x}A_{x}MnO_{3}$. The room temperature resistivities are typically in the range of 1–15 ohm cm. The resistivities of the LaMn_{1-x}Cr_xO₃ compositions (prepared in nitrogen) decrease with increasing x. $GdMn_{0.7}Cr_{0.3}O_3$ showed much too large a resistivity at room temperature; no attempt was therefore made to measure its temperature dependence of resistivity. The resistivity of $LnMn_{1-x}Cr_xO_3$ varies as Gd > Nd > Pr > La. The insulating behavior of the ferromagnetic $LnMn_{1-x}Cr_xO_3$ derivatives illustrates that without double exchange there can be no metallicity in the orthorhombic manganates. Ferromagnetism in the Crsubstituted compositions, arising only from the superexchange interaction, does not produce a metallic state. The resistivity of all the samples follows simple activated behavior; the activation energies, $E_{\rm a}$, show a systematic trend (Table 1). As the lattice distortion decreases in $LaMn_{1-x}$ Cr_xO_3 with increasing x, E_a decreases perceptibly. NdMn_{0.7}Cr_{0.3}O₃ and PrMn_{0.7}Cr_{0.3}O₃, which have smaller t values, exhibit larger $E_{\rm a}$ values. The values of $E_{\rm a}$ for

FIG. 3. Temperature variation of the dc magnetic susceptibility of $LaMn_{1-x}Cr_xO_3$ compositions prepared in nitrogen. Inset shows the data for the x = 0.2 and 0.3 compositions prepared in air.

FIG. 4. Electrical resistivity data (a) for $LaMn_{1-x}Cr_xO_3$ and (b) $LnMn_{0.7}Cr_{0.3}O_3$. The inset in (a) shows the plot of $log(\rho)$ vs 1/T for $LaMn_{0.7}Cr_{0.3}O_3$. Note the change in slope around 240 K.

LaMn_{1-x}Cr_xO₃ are comparable to those of La_{1-x}A_xMnO₃ (at $T > T_c$).

The absence of double exchange interaction in $LnMn_{1-x}Cr_{x}O_{3}$ shows up clearly in the magnetoresistance data. We have measured the magnetoresistance (MR) of the various $Ln Mn_{1-x} Cr_x O_3$ derivatives by the four-probe method in magnetic fields up to 6 T generated using a superconducting solenoid (5). We show the temperature variation of MR in Fig. 5. All the compounds show negative MR. However, the magnitude is small. It should, however, be kept in mind that the MR has been measured only down to 100 K. Generally, in the manganates containing Mn⁴⁺, the value of MR peaks close to $T_{\rm c}$. For most of the samples measured by us, except $PrMn_{0.7}Cr_{0.3}O_3$ and $NdMn_{0.7}Cr_{0.3}O_3$, $T_c \ge 100$ K. It is therefore reasonable to conclude that MR is unlikely to attain much larger values at lower temperatures. In fact, the LaMn_{1-x}Cr_xO₃ samples show a tendency for saturation around 100 K. In $PrMn_{0.7}Cr_{0.3}O_3$ and $NdMn_{0.7}Cr_{0.3}O_3$ with $T_c < 100$ K, MR is low, the magnitude being lower in the latter composition with a lower $T_{\rm c}$.

The temperature dependence of MR of $LaMn_{1-x}Cr_xO_3$ (Fig. 5) is not monotonic. The value of MR increases in two distinct steps, one occurring around 250 K, and the other occurring around T_c (marked by arrows in Fig. 5). The increase in MR close to T_c is expected but the small distinct step around 250 K deserves attention. We have indeed observed a decrease ($\sim 12\%$) in the activation energy as LaMn_{0.7}Cr_{0.3}O₃ is cooled through 250 K, as shown in the inset of Fig. 4. This behavior probably arises from the local ferromagnetically aligned clusters of spins. Substitution of Cr³⁺ in place of Mn³⁺ gives rise to a FM interaction through Mn³⁺-O-Cr³⁺ superexchange, and to a strong AFM interaction through Cr³⁺–O–Cr³⁺ superexchange. When $x \le 0.3$, this may lead to local spin-aligned clusters arising from a Cr³⁺ ion surrounded by six Mn³⁺ ions. For higher values of x, two or more Cr^{3+} ions can be immediate neighbors, favoring AFM over the ferromagnetic alignment of spins. The formation of local clusters of ferromagnetically aligned spins can lead to a decrease in E_{a} and to an enhancement of negative MR near a temperature

FIG. 5. Temperature variation of magnetoresistance (MR) of (a) $LaMn_{1-x}Cr_xO_3$ and (b) $LnMn_{0.7}Cr_{0.3}O_3$ in a field of 6 T. Inset in (b) shows the variation of MR with the magnetic field in $LaMn_{0.7}Cr_{0.3}O_3$.

corresponding to the cluster formation. We suggest that this occurs around 250 K in LaMn_{0.7}Cr_{0.3}O₃, leading to the observed changes in E_a and MR.

The absence of proper spin-ordering due to the coexistence of a strong AFM interaction is also seen in the magnetic-field dependence of the MR at a fixed temperature (see inset in Fig. 5b). The field-dependence of MR in ferromagnetic La_{1-x}A_xMnO₃ with proper spin alignment generally shows two-step behavior (5): a sharp rise in MR at low fields, typically H < 1 T, followed by a slow change at higher fields. The gradual variation of MR with H, showing no approach to saturation in fields as high as 6 T, indicates that the present material lacks proper spin alignment.

In conclusion, we find that ferromagnetic superexchange interactions arising from $Mn^{3+}-O^{2-}-Cr^{3+}$ units do not lead to strong ferromagnetic ordering, metallic behavior, and giant magnetoresistance in $LnMn_{1-x}Cr_xO_3$. This is to be contrasted with the isoelectronic $Mn^{3+}-O-Mn^{4+}$ units in $La_{1-x}A_xMnO_3$ which give rise to novel transport properties due to the strong ferromagnetic double exchange interactions, as well as the larger tolerance factor (due to the smaller ionic size of Mn^{4+}), which reduces the lattice distortion and enhances the bandwidth.

ACKNOWLEDGMENTS

The authors thank the Indo-French Center for Advanced Research and the MRL Program of the National Science Foundation under Award DMR9123048 for support of this research.

REFERENCES

- G. H. Jonker and J. H. Van Santen, *Physica* 16, 337 (1950); J. H. Van Santen and G. H. Jonker, *Physica* 16, 599 (1950).
- 2. C. Zener, Phys. Rev. 82, 403 (1951).
- K. Chahara, T. Ohno, M. Kasai, and Y. Kozono, *Appl. Phys. Lett.* 63, 1990 (1993).
- R. von Helmolt, B. Holzapfel, L. Schultz, and K. Samwer, *Phys. Rev. Lett.* 71, 2331 (1993).
- R. Mahesh, R. Mahendiran, A. K. Raychaudhuri, and C. N. R. Rao J. Solid State Chem. 114, 297 (1995); R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, T. V. Ramakrishnan, R. Mahesh, N. Rangavittal, and C. N. R. Rao, *Phys. Rev. B* 53, 3348 (1996).
- 6. C. N. R. Rao and A. K. Cheetham, *Science* **272**, 369 (1996) and the references cited therein.
- 7. N. Furukawa, J. Phys. Soc. Jpn. 63, 3214 (1994).
- A. J. Millis, P. B. Littlewood, and B. I. Shraiman, *Phys. Rev. Lett.* 74, 5144 (1995); *Phys. Rev. B* 53, 8434 (1996).
- 9. G. H. Jonker, *Physica* 22, 707 (1956).
- J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, *Phys. Rev.* 124, 373 (1961).
- 11. U. H. Bent, Phys. Rev. 106, 225 (1957).